317 research outputs found

    The role of organic polymers in the structure of cometary dust

    Get PDF
    Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles

    Polarimetry and photometry of the peculiar main-belt object 7968 = 133P/Elst-Pizarro

    Full text link
    133P/Elst-Pizarro is an object that has been described as either an active asteroid or a cometary object in the main asteroid belt. Here we present a photometric and polarimetric study of this object in an attempt to infer additional information about its origin. With the FORS1 instrument of the ESO VLT, we have performed during the 2007 apparition of 133P/Elst-Pizarro quasi-simultaneous photometry and polarimetry of its nucleus at nine epochs in the phase angle range 0 - 20 deg. For each observing epoch, we also combined all available frames to obtain a deep image of the object, to seek signatures of weak cometary activity. Polarimetric data were analysed by means of a novel physical interference modelling. The object brightness was found to be highly variable over timescales <1h, a result fully consistent with previous studies. Using the albedo-polarization relationships for asteroids and our photometric results, we found for our target an albedo of about 0.06-0.07 and a mean radius of about 1.6 km. Throughout the observing epochs, our deep imaging of the comet detects a tail and an anti-tail. Their temporal variations are consistent with an activity profile starting around mid May 2007 of minimum duration of four months. Our images show marginal evidence of a coma around the nucleus. The overall light scattering behaviour (photometry and polarimetry) resembles most closely that of F-type asteroids.Comment: Accepted by Astronomy and Astrophysic

    Photometry and polarimetry of the nucleus of comet 2P/Encke

    Full text link
    Broadband imaging photometry, and broadband and narrowband linear polarimetry was measured for the nucleus of 2P/Encke over the phase-angle range 4 - 28 deg. An analysis of the point spread function of the comet reveals only weak coma activity, corresponding to a dust production of the order of 0.05 kg/s. The nucleus displays a color independent photometric phase function of almost linear slope. The absolute R filter magnitude at zero phase angle is 15.05 +/- 0.05, and corresponds to an equivalent radius for the nucleus of 2.43 +/- 0.06 km (for an adopted albedo of 0.047). The nucleus color V - R is 0.47 +/- 0.07, suggesting a spectral slope of 11 +/- 8 %/100nm. The phase function of linear polarimetry in the V and R filters shows a widely color independent linear increase with phase angle (0.12 +/- 0.02%/deg). We find discrepancies in the photometric and polarimetric parameters between 2P/Encke and other minor bodies in the solar system, which may indicate significant differences in the surface material properties and light-scattering behavior of the bodies. The linear polarimetric phase function of 2P/Encke presented here is the first ever measured for a cometary nucleus, and its analysis encourages future studies of cometary nuclei in order to characterize the light-scattering behavior of comets on firm empirical grounds and provide suitable input to a comprehensive modeling of the light scattering by cometary surfaces.Comment: Accepted by A&

    Imaging the Dust Trail and Neckline of 67P/Churyumov-Gerasimenko

    Full text link
    We report on the results of nearly 10 hours of integration of the dust trail and neckline of comet 67P/Churyumov-Gerasimenko (67P henceforth) using the Wide Field Imager at the ESO/MPG 2.2m telescope in La Silla. The data was obtained in April 2004 when the comet was at a heliocentric distance of 4.7 AU outbound. 67P is the target of the Rosetta spacecraft of the European Space Agency. Studying the trail and neckline can contribute to the quantification of mm-sized dust grains released by the comet. We describe the data reduction and derive lower limits for the surface brightness. In the processed image, the angular separation of trail and neckline is resolved. We do not detect a coma of small, recently emitted grains.Comment: 4 pages, 3 figures, to be published in the proceedings book of the conference "Dust in Planetary Systems 2005", Calibration updated in Section

    Spitzer Observations of Comet 67P/Churyumov-Gerasimenko at 5.5-4.3 AU From the Sun

    Get PDF
    We report Spitzer Space Telescope observations of comet 67P/Churyumov-Gerasimenko at 5.5 and 4.3 AU from the Sun, post-aphelion. Comet 67P is the primary target of the European Space Agency's Rosetta mission. The Rosetta spacecraft will rendezvous with the nucleus at heliocentric distances similar to our observations. Rotationally resolved observations at 8 and 24 microns (at a heliocentric distance, rh, of 4.8 AU) that sample the size and color-temperature of the nucleus are combined with aphelion R-band light curves observed at the Very Large Telescope (VLT) and yield a mean effective radius of 2.04 +/- 0.11 km, and an R-band geometric albedo of 0.054 +/- 0.006. The amplitudes of the R-band and mid-infrared light curves agree, which suggests that the variability is dominated by the shape of the nucleus. We also detect the dust trail of the comet at 4.8 and 5.5 AU, constrain the grain sizes to be less than or similar to 6 mm, and estimate the impact hazard to Rosetta. We find no evidence for recently ejected dust in our images. If the activity of 67P is consistent from orbit to orbit, then we may expect the Rosetta spacecraft will return images of an inactive or weakly active nucleus as it rendezvous with the comet at rh = 4 AU in 2014.Comment: 19 pages, 2 tables, 10 figures. Accepted for publication in the Astronomical Journa

    Spectro-polarimetry of the bright side of Saturn's moon Iapetus

    Full text link
    Measurements of the polarized reflected sunlight from atmosphereless solar system bodies, over a range of phase angles, provide information about the surface structure and composition. With this work, we provide analysis of the polarimetric observations of the bright side of Iapetus at five different phase angles, and over the full useful wavelength range (400-800nm), so as to assess the light scattering behaviour of a typical surface water ice. Using FORS2 of the ESO VLT, we have performed linear spectro-polarimetric observations of Iapetus' bright side from 2009 to 2011 at five different phase angles, in the range from 0.80-5.20^{0}, along with circular spectro-polarimetric observations at one phase angle. By measuring, with high accuracy (~0.1% per spectral bin for each Stokes parameter), the spectral polarization of the bright trailing hemisphere of Saturn's moon Iapetus, we have identified the polarimetric characteristics of water ice, and found that its linear degree of negative polarization decreases with increasing phase angle of observation (varying from -0.9% to -0.3%), with a clear dependence on wavelengths of observation.Comment: Accepted for publication on Astonomy and Astrophysics Journal, 8-Pages and 6-figure

    Future Ground-Based Solar System Research: a Prospective Workshop Summary

    Full text link

    Reopening the TNOs Color Controversy: Centaurs Bimodality and TNOs Unimodality

    Full text link
    We revisit the Trans-Neptunian Objects (TNOs) color controversy allegedly solved by Tegler and Romanishin 2003. We debate the statistical approach of the quoted work and discuss why it can not draw the claimed conclusions, and reanalyze their data sample with a more adequate statistical test. We find evidence for the existence of two color groups among the Centaurs. Therefore, mixing both centaurs and TNOs populations lead to the erroneous conclusion of a global bimodality, while there is no evidence for two color groups in the TNOs population alone. We use quasi-simultaneous visible color measurements published for 20 centaurs (corresponding to about half of the identified objects of this class), and conclude on the existence of two groups. With the surface evolution model of Delsanti et al. (2003) we discuss how the existence of two groups of Centaurs may be compatible with a continuous TNOs color distribution.Comment: 4 pages, 4 figures, accepted for publication in Astronomy and Astrophysics Letter

    Exploring the surface properties of Transneptunian Objects and Centaurs with polarimetric FORS1/VLT observations

    Full text link
    Polarization is a powerful remote-sensing method to investigate solar system bodies. It is an especially sensitive diagnostic tool to reveal physical properties of the bodies whose observational characteristics are governed by small scatterers (dust, regolith surfaces). For these objects, at small phase angles, a negative polarization is observed, i.e., the electric vector E oscillates predominantly in the scattering plane, contrary to what is typical for rather smooth homogeneous surfaces. The behavior of negative polarization with phase angle depends on the size, composition and packing of the scatterers. These characteristics can be unveiled by modelling the light scattering by the dust or regolith in terms of the coherent backscattering mechanism. We have investigated the surface properties of TNOs and Centaurs by means of polarimetric observations with FORS1 of the ESO VLT. TNOs Ixion and Quaoar, and Centaur Chiron show a negative polarization surge. The Centaur Chiron has the deepest polarization minimum (-1.5 - 1.4%). The two TNOs show differing polarization curves: for Ixion, the negative polarization increases rapidly with phase; for Quaoar, the polarization is relatively small (~ -0.6%), and nearly constant at the observed phase angles. For all three objects, modelling results suggest that the surface contains an areal mixture of at least two components with different single-scatterer albedos and photon mean-free paths.Comment: 11 pages, 7 postscript figures, accepted by A&A; astro-ph abstract has been replaced with a more complete on

    Rosetta target comet 67P/Churyumov-Gerasimenko. Postperihelion gas and dust production rates

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
    corecore